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Abstract

It is shown that the dynamical diffraction can simply be described in real space using the property that electrons are
trapped in the electrostatic potential of the atomic columns. Due to this channelling effect, the electron diffraction can be
highly dynamical inside each column, and at the same time retain a one-to-one relationship with the crystal structure. This
description does not require the crystal to be periodic. Influence of adjacent columns can be treated using a perturbation
theory. If the crystal is sufficiently thin, i.e. of the order of 10 nm, and the accelerating voltage is not too high (e.g. 160-300
keV), the motion of the electrons is almost perfectly periodic with depth. The theory shows how the depth periodicity is
related to the mass /thickness of the column which allows the exit wavefunction to be parametrized in a simple analytical
form. These results open perspectives to solve the inverse problem of how to derive the projected structure of the object

from the exit wavefunction.

1. Introduction

Dynamical electron diffraction in perfect crystals
is usually described either in terms of Bloch waves
or by a slice formalism. Both approaches are very
appropriate when the unit cell of the crystal unit cell
is small so that only a limited number of diffraction
beams is excited. When the crystal unit cell is large
or even aperiodic (as for crystal defects) the number
of beams may become so large that not only the
computation becomes unfeasible but that the physi-
cal insight in the theory is lost, certainly since the
(weak) phase object approximation is not valid for
the object thicknesses that are usually encountered in
most experimental conditions. On the other hand,
high resolution images show, even for complicated
crystals, oriented along a simple zone axis a corre-
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spondence with the projected structure of the crystal.
This effect is difficult to explain using a many-beam
description in reciprocal space.

There is need for a simple intuitive theory that is
valid for larger crystal thicknesses. In our view, a
channelling theory fulfils this need. Indeed, it is well
known that, when a crystal is viewed along a zone
axis, i.e. parallel to the atom columns, the high
resolution images often show a one-to-one corre-
spondence with the configuration of columns pro-
vided the distance between the columns is large
enough and the resolution of the instrument is suffi-
cient. This is for instance the case in ordered alloys
with a column structure [1,2]. From this, it can be
suggested that, for a crystal viewed along a zone axis
with sufficient separation between the columns, the
wavefunction at the exit face mainly depends on the
projected structure, i.e. on the type of atom columns.
Hence, the classical picture of electrons traversing
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Fig. 1. Schematical representation of highly dynamical 1S electron
channelling in an atomic column.
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the crystal as plane-like waves in the directions of
the Bragg beams which stems from the X-ray
diffraction picture and upon which most of the simu-
lation programs are based, is in fact misleading. The
physical reason for this ‘‘local’’ dynamical diffrac-
tion is the channelling of the electrons along the
atom columns parallel to the beam direction. Due to
the positive electrostatic potential of the atoms, a
column acts as a guide or channel for the electron [3]
within which electrons can scatter dynamically with-
out leaving the column (Fig. 1). It has been proposed
[5] to exploit this so-called atom column approxima-
tion to speed up the dynamical diffraction calcula-
tions by assembling the wavefunction at the exit face
using parts that have been calculated for each atom
column separately. Channelling has been studied in-
tensively in the past (e.g. [4,6,7]).

However, the importance of channelling for inter-
preting high resolution images has often been ig-
nored or underestimated, probably because of the
fact that for historical reasons, dynamical electron
diffraction is often described in reciprocal space.
However, since most of the high resolution images
of crystals are taken in a zone axis orientation, in
which the projected structure is the simplest, but in
which the number of diffracted beams is the largest,
we believe that a simple real-space channelling the-
ory yields a much more useful and intuitive, albeit
approximate, description of the dynamical diffrac-
tion, which allows us to provide an intuitive interpre-
tation of high resolution images, even for thicker

objects. In [7] the relation between high resolution
images and electron channelling has been proposed
using a Bloch wave approach. In this work we
simplified the theory for channelling in isolated
columns.

2. Theory

If we assume that the fast electron, in the direc-
tion of propagation (z-axis) behaves as a classical
particle with velocity v (= hk/m) we can consider
the z-axis as a time axis with

t = mz /hk. (1)

Hence we can start from the time-dependent
Schrddinger equation

h o
—fS;W(RJ)=HW(RJL (2)
i
with
2
H=—§;AR—€U(R,I), (3)

where U(R,¢) is the electrostatic crystal potential, m
and k the relativistic electron mass and inverse
wavelength and 4, the Laplacian operator acting in
the plane (R) perpendicular to z. Using (1) we then
have

3 i
V(R = 7 (At V(R (R1), (4)

with
2me
h2
This is the well-known high energy equation in real
space which can also be derived from the stationary
Schriodinger equation in the forward scattering ap-
proximation [3].

The solution of (4) can be expanded in eigenfunc-
tions of the Hamiltonian

V(R,z) =

U(R.z). (5)

En
¥(R,z) = ZCn@n(R)exp{—iw-E—kz}, (6)
with H given by (3) and
h*k?
E =
= )
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is the incident electron energy, A the electron wave-
length. For E, <O the states are bound to the
columns. We now rewrite (6) as

¥(R,z) = ZC,,(D,,(R)[I —iw—g—"kz]

n o

+ ZC"(P,,(R)[exp{ —iw%kz}

. En
-1 +177sz . (8)

()

The coefficients C, are determined from the bound-
ary condition

Y CP(R)="(R0), (9)
from which
C,= [® (R)¥(R0)dR. (10)

In case of plane wave incidence one thus has
LCP(R) =1, (11)
and from (3), (9) and (11)

Y C,E®(R)=HV(R,0)=—eU(R), (12)

where from now on the projected potential is as-
sumed. Now (8) becomes

elU

IE_R) kz+ Y. C.®(R)

0 n

Y(R,z)=1+im

X

. Eﬂ . En
exp —177-Ekz -1 +177-E—kz .
(13)

The first two terms yield the well-known weak phase
object approximation. In the third term only those
states will appear in the summation for which

|E,| > E,/kz. (14)

o

In case the object is very thin, so that no state obeys
(14), the weak phase object approximation is valid.
For a thicker object, only bound states will appear

with very deep energy levels, which are localised
near the column cores. Furthermore, a two-dimen-
sional projected column potential has only very few
deep states, and when the overlap between adjacent
columns is small only the radial symmetric states
will be excited. In practice, for most types of atom
columns, only one state appears, which can be com-
pared with the 1S state of an atom.

In the case of an isolated column, taking the
origin in the centre of the column, we then have

Y(R.7)

. _eU(R)
=1+1i7

kz

O

+ CP(R)

E E
exp —171'E—kz —l+i7TE—kz i

(o) o

(15)

A very interesting consequence of this description is
that, since the state @ is very localised at the atom
core, the wavefunction for the total crystal can be
expressed as a superposition of the individual col-
umn functions

eU(R
Y(R.z)=1+im ( )kz-l—ZC,-(D,.(R—R,)

E()
E’k 1 E’k
X —im—kz} — | +im—kz|,
exp 17TE0 177'EO 2
(16)
with
U(R)= Y U(R-R)). (17)

If all the states other than the ®; have very small
energies, i.e.

|E| < E,/kz, (18)

then (8) can be simplified as

V(R.z) = LC,P(R)+ LC,B(R)

iT—k 1
>< — —_— — ,
exp{ —i - z

(19)




102 D. Van Dyck, M. Op de Beeck / Ultramicroscopy 64 (1996) 99-107

so that (15) becomes

V(R,z) =1+ CP(R-R,)

X

&
exp{—m—E—kz} - 1}, (20)

o

and (16) becomes

W(R,Z) =1+ Zci(pi(R_Ri)

X[exp{~iw§kz} - 1]. (21)

o

Expressions (16) and (21) are the basic result of this
channelling theory.

The interpretation of (21) is simple. Each column
i acts as a channel in which the wavefunction oscil-
lates periodically with depth. The periodicity is re-
lated to the ‘“weight’” of the column, i.e. propor-
tional to the atomic number of the atoms in the
column and inversely proportional to their distance
along the column. The importance of these results
lies in the fact that they describe the dynamical
diffraction for larger thicknesses than the usnal phase
grating approximation and that they require only the
knowledge of one function ®; per column (which
can be tabulated similar to atom scattering factors or
potentials). Furthermore, even in the presence of
dynamical scattering, the wavefunction at the exit
face still retains a one-to-one relation with the con-
figuration of columns. Hence this description is very
useful for interpreting high resolution images and to
provide a possible answer to the direct retrieval
problem. Eq. (21) applies to light columns, such as
Si(111) or Cu(100) with an accelerating voltage up
to about 200 keV. When the atom columns are
“‘heavier’” and the accelerating voltage is higher
(which due to the relativistic correction also in-
creases the effective strength of the potential) then
(16) has to be used. This is for example the case for
Au(100).

Fig. 2 shows the electron density [¥(R,z)|* as a
function of depth in a Au,Mn alloy crystal for 200
keV incident electrons. The corners represent the
projection of the Mn column. The square in the
centre represents the four Au columns. The distance
between adjacent columns is 0.2 nm. The periodicity
along the direction of the column is 0.4 nm. From

‘ | ; r ‘ ’
8 10 12nm
Fig. 2. The electron density at the exit plane of Au,Mn crystals of

different thickness, calculated with a multi-slice based simulation
program.

these results it is clear that the electron density in
each column fluctuates nearly periodically with
depth. For Au this periodicity is about 4 nm and for
Mn 13 nm. These periodicities are nearly the same as
for isolated columns so that the influence of neigh-
bouring columns in this case is still small. The
energies of the respective s states are respectively
about 250 and 80 eV.

When the atoms are heavy and the accelerating
voltage very high (0.5 to 1 MeV), a larger number of
states come in and the result becomes more compli-
cated. When the crystal is viewed along a higher
index zone axis, the distance between adjacent
columns decreases whereas the weight of the columns
also decreases. Hence the bound states broaden and
overlap between adjacent columns starts to occur.
This can be incorporated in the theory using pertur-
bation theory. When the overlap between columns is
too large one has to consider them as a kind of
molecules [5]. The localisation can also be improved
by using higher voltages. It has to be stressed that
the derived results are only valid in a perfect zone
axis orientation. A slight tilt can destroy the symme-
try and excite other, non-symmetric states, so that
the results become much more complicated. It is
interesting to note that channelling has usually been
described in terms of Bloch waves [6,7]). However as
follows from the foregoing, channelling is not a mere
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Fig. 3. (A,B) Amplitude and phase of the wavefunction ‘¥ — [
as a function of the thickness for an isolated Cu column (multi-
slice, 200 kV). (C,D) Amplitude and phase of the wavefunction
¥ — 1" as a function of the thickness for an isolated Au column
(multi-slice. 200 kV).

consequence of the periodicity of the crystal but
occurs even in an isolated column parallel to the
beam direction. In fact, even for an isolated column,
the problem can be treated mathematically by mak-
ing the column artificially periodical so as to gener-
ate a basis of functions (Bloch functions) to expand
the wavefunction. In this view, the Bloch character is

only of mathematical importance. Even in a crystal
in which the distance between the adjacent columns
is sufficient (e.g. 0.2 nm), this is the case. Bloch
wave calculations then yield the same 1S states as
found in our simplified treatment. Only when the
overlap between columns increases or when the beam
is inclined, the other Bloch states do become physi-
cally important.

3. Test of the validity

In order to test the validity of the theory, we
compared the theoretical results with simulations
using a real-space slice program. In case of one
single column of type i, centred at the origin, one
expects, from (20), in case the column is not too
heavy,

7E,
Y(R.z) - 1=2®(R) sin{—z—Ekz}exp

Q
< {_i
ie.

- the amplitude decreases with increasing distance
R from the centre of the columns with a slope
given by @.(R), the 1S eigenfunction;

T 7k,
—+ —kz
2 2E,

-

Fig. 4. The intensity of the wavefunction **¥ — 1”” for an artificial unit cell of (5 X 4 X 4 A) consisting of three Cu (or Au) columns with an

inter-atomic distance of 1 A. (Top) Side view. (Bottom) Top view.
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Fig. 5. The scaled eigenstate ¢(R) as a function of VE for
various atomic mass Z, calculated from the channelling eigen-
value problem.

« the amplitude oscillates with depth with a period-
icity of 4E_/kE;
- the phase increases linearly with depth, starting

from — /2.

Fig. 3 shows the amplitude (A) and phase (B) of
(¥ — 1) for one isolated Cu column, with periodicity
38 A along the ordered axis. These results are in
complete agreement with (22). Fig. 3 (C and D)
show the amplitude and phase for an isolated heavier
column of Au with repeat distance of 4.08 A along
the column. Here the oscillation of the amplitude is
superimposed onto a linearly increasing function.
This is in agreement with the improved expression
(15).

In order to demonstrate the validity of the theory
when the columns are very close we performed a
simulation of |¥— 11> for an artificial unit cell
(5 X 4 X 4 &) consisting of three Cu (or Au) columns
with an artificial distance of 1 A (Fig. 4). It is clear

o.zo-J ‘

== Dist =1

umn Dist-2ﬁ
0.154 + = o Dist = 3,
0.10J )

!
0.05 ] ’nl.dﬂm"
0'00'{ (’ T L} T T
0 20 40 60 80 7

Fig. 6. The linear scaling of the energy E as a function of
Z/d*?, calculated from the channelling eigenvalue problem.

that the periodicity, as expected for an isolated col-
umn, holds for Cu up to a thickness of 30 nm and for
Au up to 10 nm.

4. Universal scaling

As is clear from Figs. 5 and 6 the eigenfunctions
empirically seem to scale with VE and the eigenen-
ergy E scales with Z/d*/* with Z the atomic charge
and d the distance between the atoms in the column.
This scaling behaviour allows us to parametrize the
wavefunction in the form:

E
Y(R,z)=1+ a[exp{—iw;kz} - 1}

0

XE~'/?®,(VE R). (23)

o Au

O Mn

Fig. 7. Deviation from the ideal channelling at the translation interface in Au,Mn (see text), calculated with a multi-slice simulation
program. (a) Electron density at the exit phase. (b) Different image. (c) Model.
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This expression can still be improved so as to hold
for thicker objects and /or heavier columns:

¥(R,z) =1+ BEY’V(R)

+ «

Xp (] k 1 177
e _i —_— — +' _k
Z Z

o]

X E~'?®,(VE R), (24)

where V, and @, are universally scaled functions for
the projected potential and the 1S bound state, re-
spectively, while a and B are proper constant exci-
tation factors. The advantage of this result is that the
exit wavefunction is expressed analytically in terms
of the parameters (Z, d, z, column position) that
describe the crystal structure. This result enables us
to calculate image and diffraction patterns in an
analytical (and thus very fast way) and also to solve
the inverse problem of deriving the crystal structure
by fitting with the experimentally reconstructed ob-
ject wave.

5. Discussion

5.1. Channelling and defects

The channelling effect still occurs in the presence
of defects such as translation interfaces, twin inter-
faces, dislocations, provided the columns parallel to
the incident beam are not disrupted. To demonstrate
this we take again the Au,Mn alloy of Fig. 2 in
which we now introduce translation interfaces (anti-
phase boundaries) (Fig. 7 right). The electron den-
sity, calculated with the periodic continuation method
is shown in the centre (thickness 8 nm). If the
channelling along the individual columns would not
be affected by the interface, the electron density at
both sides of the interface would be identical to that
of the perfect crystal shifted over the displacement
vector of the interface. In order to reveal the devia-
tion from this ideal situation, we subtract this ‘‘ideal’’
electron density at both sides and display the differ-
ence with increased contrast (Fig. 7 middle) [11].
From this it is clear that the deviation from the ideal
channelling condition is very small and occurs only
very close to the interface.

5.2. Diffraction pattern

Fourier transforming the wavefunction (21) at the
exit face of the object yields the wavefunction in the
diffraction plane, which can be written as

¥(g.2) = 8(g) + LF(g.c)exp{~i2mg R}
(25)

(in the case of heavy columns we will have to use
(16) instead). In a sense the simple kinematical
expression for the diffraction amplitude holds, pro-
vided the scattering factor for the atoms is replaced
by a dynamical scattering factor for the columns, in a
sense as obtained in [8] and which is defined by

Cifi(g). (26)

E
F(g,2)= exp{—iwsz} -1

(8]

with f(g) the Fourier transform of @ (R). It is clear

that the dynamical scattering factor varies periodi-

cally with depth. This periodicity may be different
for different columns.

In case of a monatomic crystal, all F; are identi-
cal. Hence W(g, z) varies perfectly periodically with
depth. In a sense the electrons are periodically trans-
ferred from the central beam to the diffracted beams
and back. The periodicity of this dynamical oscilla-
tion (which can be compared with the Pendelldsung
effect) is called the dynamical extinction distance. It
has for instance been observed in Si(111). An impor-
tant consequence of (21) is the fact that the diffrac-
tion pattern can still be described by a kinematical
type of expression so that existing results and tech-
niques that have been based on the kinematical
theory remain valid to some extent for thicker crys-
tals in zone axis orientation. Examples are
- diffraction at periodical stacking of translation

interfaces, twin interfaces and mixed layer com-

pounds;

- diffuse scattering from substitutionally ordering
alloys with a column structure;

« diffraction contrast at defects. In particular the
extinction rule based on the g-R criterion re-
mains valid if the defect is parallel to the incident
beam.
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5.3. High resolution images

The wavefunction in the image plane can be
written as the convolution product of the wavefunc-
tion at the exit face of the crystal with the impulse
response function t(R) of the electron microscope

Ei
exp{ —inkz} - 1]
XCP,(R—-R,)*t(R). (27)

If the microscope is operated close to optimum focus
and in axial mode, the impulse response function is
sharply peaked.

If the distance between the columns is larger than
the width of the impulse response function #(R), the
overlap between convolution products @, * f(R) of
adjacent sites can be assumed to be small so that
each column is thus imaged separately. The contrast
of a particular column varies periodically with thick-
ness. The periodicity can be different for different
types of columns. It is interesting to note that the
functions &, as well as 1(R) are symmetrical around
the origin, provided the objective aperture is centred
around the optical axis. Hence, the image of a col-
umn is rotationally symmetric around the position R,
of the columns. The intensity at R; is a maximum or
a minimum. The positions of the columns can thus
be determined from the positions of the intensity
extrema.

In case the resolution of the microscope is insuffi-
cient to discriminate the individual columns, or the
focus is not close to optimum, the overlap between
the convolution products of adjacent columns cannot
be avoided and the interpretation of the contrast is
not straightforward.

Y(R,z)=1+ Z

5.4. Direct structure retrieval

Using holographic methods such as sideband
holography [9] or focus variation [10], it is possible
to reconstruct the exit wave of an object. In order to
retrieve the crystal structure out of this object wave
one can use this channelling theory. Indeed, expres-
sion (23) yields a simple analytical expression for
the wavefunction at the exit of a column in terms of
Z, d and z. Albeit approximately, this expression is
sufficiently simple to be used in a final least squares

fit from which these structural parameters can be
obtained. If necessary, the residual imaging parame-
ters such as C, and defocus can be fitted simultane-
ously.

5.5. Other applications

The simple expressions (16) and (21) can also be
used to study other observed effects related to scat-
tering such as
- dynamical extinction and extinction contours,

- radiation damage at extinction contours,
periodicity in Argand diagrams of diffracted
beams,
periodicity in the image contrast in Quantitem,

+ Z contrast,

+ Alchemi,

- applicability of direct methods based on Sayre’s
equation.

6. Conclusion

The real-space channelling theory for isolated
columns provides a simple and intuitive means to
express the exact wavefunction of an object in terms
of the projected column structure.

The theory is valid for most crystal thicknesses
used in HREM situations. It provides a simple ana-
lytical tool to study dynamical scattering in a crystal
and related effects and to solve the inverse problem
of deducing the projected crystal structure out of the
experimentally reconstructed exit wave.
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