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Abstract 

It is shown that the dynamical diffraction can simply be described in real space using the property that electrons are 
trapped in the electrostatic potential of the atomic columns. Due to this channelling effect, the electron diffraction can be 
highly dynamical inside each column, and at the same time retain a one-to-one relationship with the crystal structure. This 
description does not require the crystal to be periodic. Influence of adjacent columns can be treated using a perturbation 
theory. If the crystal is sufficiently thin, i.e. of the order of 10 nm, and the accelerating voltage is not too high (e.g. 100-300 
keV), the motion of the electrons is almost perfectly periodic with depth. The theory shows how the depth periodicity is 
related to the mass/thickness of the column which allows the exit wavefunction to be parametrized in a simple analytical 
form. These results open perspectives to solve the inverse problem of how to derive the projected structure of the object 
from the exit wavefunction. 

1. Introduction 

Dynamical electron diffraction in perfect crystals 
is usually described either in terms of  Bloch waves 
or by a slice formalism. Both approaches are very 
appropriate when the unit cell of  the crystal unit cell 
is small so that only a limited number of  diffraction 
beams is excited. When the crystal unit cell is large 
or even aperiodic (as for crystal defects) the number 
of beams may become so large that not only the 
computation becomes unfeasible but that the physi- 
cal insight in the theory is lost, certainly since the 
(weak) phase object approximation is not valid for 
the object thicknesses that are usually encountered in 
most experimental conditions. On the other hand, 
high resolution images show, even for complicated 
crystals, oriented along a simple zone axis a corre- 
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spondence with the projected structure of  the crystal. 
This effect is difficult to explain using a many-beam 
description in reciprocal space. 

There is need for a simple intuitive theory that is 
valid for larger crystal thicknesses. In our view, a 
channelling theory fulfils this need. Indeed, it is well 
known that, when a crystal is viewed along a zone 
axis, i.e. parallel to the atom columns, the high 
resolution images often show a one-to-one corre- 
spondence with the configuration of columns pro- 
vided the distance between the columns is large 
enough and the resolution of  the instrument is suffi- 
cient. This is for instance the case in ordered alloys 
with a column structure [1,2]. From this, it can be 
suggested that, for a crystal viewed along a zone axis 
with sufficient separation between the columns, the 
wavefunction at the exit face mainly depends on the 
projected structure, i.e. on the type of  atom columns. 
Hence, the classical picture of  electrons traversing 
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the crystal as plane-like waves in the directions of 
the Bragg beams which stems from the X-ray 
diffraction picture and upon which most of the simu- 
lation programs are based, is in fact misleading. The 
physical reason for this " local"  dynamical diffrac- 
tion is the channelling of the electrons along the 
atom columns parallel to the beam direction. Due to 
the positive electrostatic potential of the atoms, a 
column acts as a guide or channel for the electron [3] 
within which electrons can scatter dynamically with- 
out leaving the column (Fig. 1). It has been proposed 
[5] to exploit this so-called atom column approxima- 
tion to speed up the dynamical diffraction calcula- 
tions by assembling the wavefunction at the exit face 
using parts that have been calculated for each atom 
column separately. Channelling has been studied in- 
tensively in the past (e.g. [4,6,7]). 

However, the importance of channelling for inter- 
preting high resolution images has often been ig- 
nored or underestimated, probably because of the 
fact that for historical reasons, dynamical electron 
diffraction is often described in reciprocal space. 
However, since most of the high resolution images 
of crystals are taken in a zone axis orientation, in 
which the projected structure is the simplest, but in 
which the number of diffracted beams is the largest, 
we believe that a simple real-space channelling the- 
ory yields a much more useful and intuitive, albeit 
approximate, description of the dynamical diffrac- 
tion, which allows us to provide an intuitive interpre- 
tation of high resolution images, even for thicker 

objects. In [7] the relation between high resolution 
images and electron channelling has been proposed 
using a Bloch wave approach. In this work we 
simplified the theory for channelling in isolated 
columns. 

2. Theory 

If we assume that the fast electron, in the direc- 
tion of propagation (z-axis) behaves as a classical 
particle with velocity v ( =  hk/m) we can consider 
the z-axis as a time axis with 

t = mz/hk. (1) 

Hence we can start from the time-dependent 
Schrtidinger equation 

h 

i Ot 
with 

- - - - -g r (R , t )  ---H~(R,t),  (2) 

h 2 

H = - 2---~ a .  - eU(R,t),  (3) 

where U(R,t) is the electrostatic crystal potential, m 
and k the relativistic electron mass and inverse 
wavelength and A R the Laplacian operator acting in 
the plane (R) perpendicular to z. Using (1) we then 
have 

0 i 
~Z q t ( R , t )  = ~ (  A R + V ( R , z ) ) ~ ( R , t ) ,  (4) 

with 

2me 
V(R,z)  : ---~-U(R,z).  (5) 

This is the well-known high energy equation in real 
space which can also be derived from the stationary 
Schr~idinger equation in the forward scattering ap- 
proximation [3]. 

The solution of (4) can be expanded in eigenfunc- 
tions of the Hamiltonian 

g r ( R , z )  = ~Q~n(R)exp( - - iTrEnkz l  (6) 
eo J' 

with H given by (3) and 

h2k e 
17°= 2m (7) 
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is the incident electron energy, A the electron wave- 
length. For E, < 0  the states are bound to the 
columns. We now rewrite (6) as 

[ ~(R,z )  = Ecn¢o(R) l - i ~ - - ~ z ]  
. Eo 1 

[{  exp + Y'. - iTr - -k z l  7 c°~"(R) eo ) 

- 1 +  i ~ , z ]  (s) 

The coefficients C, are determined from the bound- 
ary condition 

E C.¢. (R)  = * ( R , 0 ) ,  (9) 
n 

from which 

C =fqb .* (R)~(R ,O)dR.  (lO) 

In case of plane wave incidence one thus has 

E C ~ . ( R )  = 1, 
t /  

and from (3), (9) and (11) 

(11) 

]~_.C.E.dI).(R) = H ~ ( R , 0 )  = - e U ( R ) ,  (12) 
?1 

where from now on the projected potential is as- 
sumed. Now (8) becomes 

eU(R) 
~ (  R,z)  = l + i T r  kz + ~ Cfl~.( R) 

E,, 

[ { E. _ iTr--kz ] irr--kzl  1 + 
× e x p -  Eo ] Eo ] 

(13) 

The first two terms yield the well-known weak phase 
object approximation. In the third term only those 
states will appear in the summation for which 

IE, I _> Eo/kz. (14) 

In case the object is very thin, so that no state obeys 
(14), the weak phase object approximation is valid. 
For a thicker object, only bound states will appear 

with very deep energy levels, which are localised 
near the column cores. Furthermore, a two-dimen- 
sional projected column potential has only very few 
deep states, and when the overlap between adjacent 
columns is small only the radial symmetric states 
will be excited. In practice, for most types of atom 
columns, only one state appears, which can be com- 
pared with the IS state of an atom. 

In the case of an isolated column, taking the 
origin in the centre of the column, we then have 

~ ( R , z )  

~U(R) 
= 1  +i~-  kz 

E,, 

E _ iT"r--kz]. - i'rr-- kz t 1 + + C ¢ ( R )  exp Eo ) Eo ] 

(16) 

A very interesting consequence of this description is 
that, since the state q) is very localised at the atom 
core, the wavefunction for the total crystal can be 
expressed as a superposition of the individual col- 
umn functions 

eU(R) 
~ (  R,z)  = l + i T r  kz + E Ciqbi( R -  Ri) 

Eo 

Ei - irr--kz ] - i T r ~ k z l  I + 
× exp E o ) Eo ] '  

(16) 

with 

v(R) = E ~ ( R - R , ) .  (17) 
i 

If all the states other than the ~i  have very small 
energies, i.e. 

[E,[ << Eo/kz, (18) 

then (8) can be simplified as 

~(R,z) = E C.~.(R) + E C.~(R) 
13 H 
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so that (15) becomes 

~ (  R , z )  = 1 + Ci~i( R -  Ri)  

i Tr- -  kz l - X exp - Eo J 

and (16) becomes 

~ ( R , z )  = 1 + E C i e b i ( R - R i )  
i 

' 1]. 

1], (20) 

(21) 

Expressions (16) and (21) are the basic result of this 
channelling theory. 

The interpretation of (21) is simple. Each column 
i acts as a channel in which the wavefunction oscil- 
lates periodically with depth. The periodicity is re- 
lated to the "weight"  of the column, i.e. propor- 
tional to the atomic number of the atoms in the 
column and inversely proportional to their distance 
along the column. The importance of these results 
lies in the fact that they describe the dynamical 
diffraction for larger thicknesses than the usual phase 
grating approximation and that they require only the 
knowledge of one function ~i per column (which 
can be tabulated similar to atom scattering factors or 
potentials). Furthermore, even in the presence of 
dynamical scattering, the wavefunction at the exit 
face still retains a one-to-one relation with the con- 
figuration of columns. Hence this description is very 
useful for interpreting high resolution images and to 
provide a possible answer to the direct retrieval 
problem. Eq. (21) applies to light columns, such as 
Si(ll  1) or Cu(100) with an accelerating voltage up 
to about 200 keV. When the atom columns are 
"heavier" and the accelerating voltage is higher 
(which due to the relativistic correction also in- 
creases the effective strength of the potential) then 
(16) has to be used. This is for example the case for 
Au(100). 

Fig. 2 shows the electron density Iq ' (R ,z ) l  2 as a 
function of depth in a AuaMn alloy crystal for 200 
keV incident electrons. The comers represent the 
projection of the Mn column. The square in the 
centre represents the four Au columns. The distance 
between adjacent columns is 0.2 nm. The periodicity 
along the direction of the column is 0.4 nm. From 

//  //  //  
2 4 6 

8 10 12nm 
Fig. 2. The electron density at the exit plane of Au4Mn crystals of 
different thickness, calculated with a multi-slice based simulation 
program. 

these results it is clear that the electron density in 
each column fluctuates nearly periodically with 
depth. For Au this periodicity is about 4 nm and for 
Mn 13 nm. These periodicities are nearly the same as 
for isolated columns so that the influence of neigh- 
bouring columns in this case is still small. The 
energies of the respective s states are respectively 
about 250 and 80 eV. 

When the atoms are heavy and the accelerating 
voltage very high (0.5 to 1 MeV), a larger number of 
states come in and the result becomes more compli- 
cated. When the crystal is viewed along a higher 
index zone axis, the distance between adjacent 
columns decreases whereas the weight of the columns 
also decreases. Hence the bound states broaden and 
overlap between adjacent columns starts to occur. 
This can be incorporated in the theory using pertur- 
bation theory. When the overlap between columns is 
too large one has to consider them as a kind of 
molecules [5]. The localisation can also be improved 
by using higher voltages. It has to be stressed that 
the derived results are only valid in a perfect zone 
axis orientation. A slight tilt can destroy the symme- 
try and excite other, non-symmetric states, so that 
the results become much more complicated. It is 
interesting to note that channelling has usually been 
described in terms of Bloch waves [6,7]. However as 
follows from the foregoing, channelling is not a mere 
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Fig. 3. (A,B) Amplitude and phase of the wavefunction " ~  - 1" 
as a function of the thickness for an isolated Cu column (multi- 
slice, 200 kV). (C,D) Amplitude and phase of the wavefunction 
" ~  - I"  as a function of the thickness for an isolated Au column 
(multi-slice, 200 kVk 

consequence of the periodicity of the crystal but 
occurs even in an isolated column parallel to the 
beam direction. In fact, even for an isolated column, 
the problem can be treated mathematically by mak- 
ing the column artificially periodical so as to gener- 
ate a basis of functions (Bloch functions) to expand 
the wavefunction. In this view, the Bloch character is 

only of mathematical importance. Even in a crystal 
in which the distance between the adjacent columns 
is sufficient (e.g. 0.2 nm), this is the case. Bloch 
wave calculations then yield the same 1S states as 
found in our simplified treatment. Only when the 
overlap between columns increases or when the beam 
is inclined, the other Bloch states do become physi- 
cally important. 

3. Test of the validity 

In order to test the validity of the theory, we 
compared the theoretical results with simulations 
using a real-space slice program. In case of one 
single column of type i, centred at the origin, one 
expects, from (20), in case the column is not too 
heavy, 

[ rrEi } 
q t ( R , z )  - 1 = 2q),(R) s i n { - - k z  exp 

2Eo 

× - i  --f+ 2EokZ , (22) 

i.e. 
• the amplitude decreases with increasing distance 

R from the centre of the columns with a slope 
given by qbi(R), the IS eigenfunction; 

Fig. 4. The intensity of the wavefunction " ~ -  1" for an artificial unit cell of (5 x 4 × 4 A) consisting of three Cu (or Au) columns with an 
inter-atomic distance of 1 ,~. (Top) Side view. (Bottom) Top view. 
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Fig. 5. The scaled eigenstate qS(R) as a function of 7~- for 
various atomic mass Z, calculated from the channelling eigen- 
value problem. 
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Fig. 6. The linear scaling of the energy E as a function of 
Z / d  5/4, calculated from the channelling eigenvalue problem• 

the amplitude oscillates with depth with a period- 
icity of 4Eo/kEi;  
the phase increases linearly with depth, starting 
from - 7r/2. 

Fig. 3 shows the amplitude (A) and phase (B) of 
( ~ -  1) for one isolated Cu column, with periodicity 
3.8 A along the ordered axis. These results are in 
complete agreement with (22). Fig. 3 (C and D) 
show the amplitude and phase for an isolated heavier 
column of Au with repeat distance of 4.08 ,~ along 
the column. Here the oscillation of the amplitude is 
superimposed onto a linearly increasing function. 
This is in agreement with the improved expression 
(15). 

In order to demonstrate the validity of the theory 
when the columns are very close we performed a 
simulation of [ ~ - I I  2 for an artificial unit cell 
(5 × 4 × 4 A) consisting of three Cu (or Au) columns 
with an artificial distance of 1 A (Fig. 4). It is clear 

that the periodicity, as expected for an isolated col- 
umn, holds for Cu up to a thickness of 30 nm and for 
Au up to 10 nm. 

4 .  U n i v e r s a l  s c a l i n g  

As is clear from Figs. 5 and 6 the eigenfunctions 
empirically seem to scale with v ~  and the eigenen- 
ergy E scales with Z / d  5/4 with Z the atomic charge 
and d the distance between the atoms in the column. 
This scaling behaviour allows us to parametrize the 
wavefunction in the form: 

g r ( R , z )  = 1 + ol exp - i r r - - k z  
~o 

) 

/ -1] 
(23) 

A I A ~ A A .  ooI+oIoZoOIo°oo!oZoO!o°o 
o o o o o Aps 

o o o o o • o 
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Fig. "7. Deviation from the ideal channelling at the translation interface in Au4Mn (see text), calculated with a multi-slice simulation 
program. (a) Electron density at the exit phase. (b) Different image. (c) Model. 
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This expression can still be improved so as to hold 
for thicker objects and /or  heavier columns: 

q , (R ,z )  = l +/3E /SVo(R) 

E iTr--kz] +ce exp - iTr - -kz l  - 1+ 
Eo J Eo J 

×E-I/2~o(V/-E R ), (24) 

where Vo and q~o are universally scaled functions for 
the projected potential and the 1S bound state, re- 
spectively, while a and /3 are proper constant exci- 
tation factors. The advantage of this result is that the 
exit wavefunction is expressed analytically in terms 
of the parameters (Z, d, z, column position) that 
describe the crystal structure. This result enables us 
to calculate image and diffraction patterns in an 
analytical (and thus very fast way) and also to solve 
the inverse problem of deriving the crystal structure 
by fitting with the experimentally reconstructed ob- 
ject wave. 

5. Discussion 

5.1. Channelling and defects 

The channelling effect still occurs in the presence 
of defects such as translation interfaces, twin inter- 
faces, dislocations, provided the columns parallel to 
the incident beam are not disrupted. To demonstrate 
this we take again the Au4Mn alloy of Fig. 2 in 
which we now introduce translation interfaces (anti- 
phase boundaries) (Fig. 7 right). The electron den- 
sity, calculated with the periodic continuation method 
is shown in the centre (thickness 8 nm). If the 
channelling along the individual columns would not 
be affected by the interface, the electron density at 
both sides of the interface would be identical to that 
of the perfect crystal shifted over the displacement 
vector of the interface. In order to reveal the devia- 
tion from this ideal situation, we subtract this " ideal"  
electron density at both sides and display the differ- 
ence with increased contrast (Fig. 7 middle) [11]. 
From this it is clear that the deviation from the ideal 
channelling condition is very small and occurs only 
very close to the interface. 

5.2. Diffraction pattern 

Fourier transforming the wavefunction (21) at the 
exit face of the object yields the wavefunction in the 
diffraction plane, which can be written as 

~ ( g , z )  = 6(g)  + Y ' ~ F i ( g , z ) e x p { - i 2 ~ r g . R i }  
i 

(25) 

(in the case of heavy columns we will have to use 
(16) instead). In a sense the simple kinematical 
expression for the diffraction amplitude holds, pro- 
vided the scattering factor for the atoms is replaced 
by a dynamical scattering factor for the columns, in a 
sense as obtained in [8] and which is defined by 

I /  E ] Fi(g,z ) = exp - i T r - - k z l -  1 Cifi(g ), (26) 
eo j 

with f~(g) the Fourier transform of ~i(R). It is clear 
that the dynamical scattering factor varies periodi- 
cally with depth. This periodicity may be different 
for different columns. 

In case of a monatomic crystal, all F i are identi- 
cal. Hence qt(g,  z) varies perfectly periodically with 
depth. In a sense the electrons are periodically trans- 
ferred from the central beam to the diffracted beams 
and back. The periodicity of this dynamical oscilla- 
tion (which can be compared with the Pendellrsung 
effect) is called the dynamical extinction distance. It 
has for instance been observed in Si(l l  1). An impor- 
tant consequence of (21) is the fact that the diffrac- 
tion pattern can still be described by a kinematical 
type of expression so that existing results and tech- 
niques that have been based on the kinematical 
theory remain valid to some extent for thicker crys- 
tals in zone axis orientation. Examples are 
• diffraction at periodical stacking of translation 

interfaces, twin interfaces and mixed layer com- 
pounds; 
diffuse scattering from substitutionally ordering 
alloys with a column structure; 
diffraction contrast at defects. In particular the 
extinction rule based on the g - R  criterion re- 
mains valid if the defect is parallel to the incident 
beam. 
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5.3. High resolution images 

The wavefunction in the image plane can be 
written as the convolution product of the wavefunc- 
tion at the exit face of the crystal with the impulse 
response function t(R) of the electron microscope 

~ ( R , z ) = l + ~ [ e x p ( - i T r - ~ o k Z } - I  } 

XCiCI)i(R - R i )  * t (R) .  (27) 

If the microscope is operated close to optimum focus 
and in axial mode, the impulse response function is 
sharply peaked. 

If  the distance between the columns is larger than 
the width of the impulse response function t(R), the 
overlap between convolution products q~i * t(R) of 
adjacent sites can be assumed to be small so that 
each column is thus imaged separately. The contrast 
of a particular column varies periodically with thick- 
ness. The periodicity can be different for different 
types of columns. It is interesting to note that the 
functions q~i as well as t(R) are symmetrical around 
the origin, provided the objective aperture is centred 
around the optical axis. Hence, the image of a col- 
umn is rotationally symmetric around the position Ri 
of the columns. The intensity at Rg is a maximum or 
a minimum. The positions of the columns can thus 
be determined from the positions of the intensity 
extrema. 

In case the resolution of the microscope is insuffi- 
cient to discriminate the individual columns, or the 
focus is not close to optimum, the overlap between 
the convolution products of adjacent columns cannot 
be avoided and the interpretation of the contrast is 
not straightforward. 

fit from which these structural parameters can be 
obtained. If necessary, the residual imaging parame- 
ters such as C~ and defocus can be fitted simultane- 
ously. 

5.5. Other applications 

The simple expressions (16) and (21) can also be 
used to study other observed effects related to scat- 
tering such as 
• dynamical extinction and extinction contours, 
• radiation damage at extinction contours, 

periodicity in Argand diagrams of diffracted 
beams, 
periodicity in the image contrast in Quantitem, 

• Z contrast, 
• Alchemi, 
• applicability of direct methods based on Sayre's 

equation. 

6. Conclusion 

The real-space channelling theory for isolated 
columns provides a simple and intuitive means to 
express the exact wavefunction of an object in terms 
of the projected column structure. 

The theory is valid for most crystal thicknesses 
used in HREM situations. It provides a simple ana- 
lytical tool to study dynamical scattering in a crystal 
and related effects and to solve the inverse problem 
of deducing the projected crystal structure out of the 
experimentally reconstructed exit wave. 
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5.4. Direct structure retrieval 
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